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Abstract: Specially designed ductile end diaphragms of steel bridge superstructures have previously proved, both theoretically
and experimentally, to dissipate seismic input energy, protecting other substructure and superstructure members. Although ductile dia-
phragms have been introduced in the latest AASHTO guide specifications as a structural system that can be used to resist transverse earth-
quake effects, no guidance is provided on how to implement these ductile diaphragms in skewed bridges. To address this need and to resolve
some shortcomings of the known end diaphragm systems (EDSs), two bidirectional end diaphragm configurations, namely, EDS-1 and
EDS-2, with buckling restrained braces (BRBs) are proposed and numerically investigated. Bidirectional end diaphragm is a new concept,
and can be implemented both in straight and skewed steel bridge superstructures to resist bidirectional earthquake effects. To assess the
relative effectiveness of the proposed systems and to investigate how various parameters relate to seismic response, closed-form solutions
are developed using nondimensional bridge geometric ratios. Numerical results indicate that skewness more severely affects end diaphragm
behavior when φ ≥ 30°. Also, comparisons reveal that although both end diaphragm systems can be used with confidence as ductile seismic
fuses, each of the two systems considered have advantages that may favor its implementation, depending on project-specific constraints.
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Introduction

The recently published AASHTO Seismic Guide Specifications
for LRFD Seismic Bridge Design include provisions for the
design of steel bridges having specially detailed ductile diaphragms
to resist loads applied in the bridge transverse direction (AASHTO
2009; closely following the recommendations in MCEER/ATC
2003). Previous studies (e.g., Zahrai and Bruneau 1999a,
b; Carden et al. 2006) support that significant energy can be
dissipated in ductile bridge-end diaphragms, while reducing
seismic demands in other substructure and superstructure elements.
Past research has shown how shear panel systems (SPSs), steel
triangular plate added damping and stiffness devices (TADAs),
eccentrically braced end diaphragms (EBFs), and buckling
restrained braces (BRBs—also called unbonded braces) could be
detailed to provide an appropriate seismic performance. Ductile
performance requires special detailing such as that evinced by
bridge-end diaphragm damage in prior earthquakes (Bruneau et al.
1996; Itani et al. 2004).

Currently, ductile diaphragms have to be combined with
other lateral load resisting strategies to address seismic excitations
along the bridge’s longitudinal axis. Also, AASHTO (2009) pro-
vides no guidance on how to implement ductile diaphragms in
skewed bridges—even though steel bridges with skewed super-
structure geometries are commonly encountered at highway inter-
changes, river crossings, and other places because of alignment
limitations.

This paper investigates the seismic response of the proposed
concept to implement ductile end diaphragms in skewed bridge
superstructures, at the same time resisting bidirectional earthquake
excitations—implementation in nonskewed straight bridges being a
special case of the general formulation. Here, BRBs are used as the
diaphragm ductile seismic fuses. BRBs have been implemented in
many buildings in Japan and in the United States on account of
their stable unpinched hysteretic characteristics, ease of design,
and ability to eliminate seismically induced structural damage
and provide satisfactory seismic performance. BRBs have also
been used to retrofit the Minato Bridge in Japan (Kanaji et al.
2003), the world’s third-longest truss bridge, using a concept
similar to the ductile cross-frame system developed by Sarraf
and Bruneau (1998a, b) and analogous to the ductile diaphragm
concept.

Here, two proposed end diaphragm systems (EDSs) (i.e.,
geometrical layouts) are considered, namely, EDS-1 and
EDS-2. Although they are considered here in the perspec-
tive of new bridge design, the information presented is also
applicable to existing bridges for seismic retrofit purposes.
Results from parametric studies are used to formulate design
recommendations.
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Proposed Ductile End Diaphragm Configurations
with BRBs

This study focuses on two types of ductile bracing configurations in
bridge-end diaphragms:
• EDS-1: Two pairs of BRBs are installed at each end of a span, in

a configuration that coincides with the skew and longitudinal
directions [Fig. 1(a)].

• EDS-2: A single pair of BRBs is installed at each end of a span,
at an angle that does not coincide with the bridge longitudinal
and skew directions [Fig. 1(b)].

In EDS-1, the bottom connection of the pair of BRBs oriented in
the skew direction can be connected either to the abutment or be-
tween web stiffeners of the bridge girders. The latter choice is
common for steel bridges. The pair of longitudinal BRBs is a
new concept and needs to be connected either to the horizontal,
next to the bearings, or to the vertical face of the abutments—as
would be the BRBs in EDS-2. The BRBs connecting to the abut-
ment need to be in series with lock-up devices that allow thermal
expansion under normal conditions but engage the BRBs during
earthquakes. For the deck-level connection, specially designed
cross beams are required to elastically resist forces from the BRBs,
unless connection to the existing interior cross-frames or girders is
developed without damaging any internal component (capacity
design).

Since significant forces may develop in the BRBs, all compo-
nents to which the BRBs connect should be checked to ensure that
they are able to resist such forces without yielding and without
undesirable deformations. Some details developed by other re-
searchers to connect ductile diaphragms to bridge decks can be use-
ful for this purpose (Carden et al. 2006). Details that do not induce

large moments at the BRB’s ends may be also desirable. Examples
of such BRB connections are available in Lopez and Sabelli (2004).

Modeling Assumptions

Neoprene bearings, bidirectional sliding bearings, and other bear-
ings with negligible strength to horizontal deformations—and to
some degree even bearings damaged by an earthquake that could
still slide in a stable manner—are considered here. This case is
called the floating span. Floating span–type bridges have no resis-
tance to lateral earthquake loading and therefore need to be
restrained laterally by ductile seismic devices, shear keys, or elastic
end diaphragms to limit their horizontal displacements. In this study,
the BRBs serve as an alternative and seismically effective choice.

To check numerical results obtained from computer analysis
using simple models, closed-form solutions are also presented.
To help reduce the complexity of the derived expressions, an ideal
elastic-plastic hysteretic model with equal tension and compression
capacities Ty ¼ Cy is used for the BRBs (Black et al. 2002; Sabelli
et al. 2003; Celik and Bruneau 2007). Furthermore, the BRBs are
assumed to have pinned end connections and are not active under
gravity loading. Cross-sectional areas of BRBs and skew angles are
taken to be the same for each of the two end diaphragms used in
each specific bridge. Furthermore, the rigid concrete deck and the
steel girders are continuously connected, i.e., composite girders,
but are assumed to be fully flexible about their connection axis,
parallel to the bridge axis. The angle between the plane of the con-
crete deck and the plane of the steel beam can change without
developing out-of-plane flexural moments.

Zahrai and Bruneau (1998) demonstrated that seismic demand
under lateral load concentrates at the end diaphragms of steel slab-
on-girder bridge superstructures and that the presence of intermedi-
ate cross braces does not affect the seismic behavior of these
bridges and can be neglected. This demonstration leads to a sim-
plified structural model to simulate the system behavior. Results
from the nonlinear finite-element analyses by Zahrai and Bruneau
(1998), which considered the complete bridge system—that is the
concrete deck, steel girders, and all diaphragms, provide substantial
confidence in the ability of the simplified model to capture all the
key aspects of bridge response of interest here. For EDS-2, the steps
followed to idealize a typical bridge with end diaphragms into a
simpler model are given in Fig. 2. Further details and a similar
process of idealization followed for EDS-1 are given in Celik
and Bruneau (2007). These analytical models account for general
system geometric dimensions such as the skew angle (φ), girder
spacing (s), end diaphragm depth (d), and length to internal
diaphragm anchor point (a), as well as bidirectional earthquake
effects. Results from this study can help select an appropriate value
for the parameter a.

End Diaphragm System-1

Analytical results of interest include base shear forces at yield;
yield displacements or drifts; member versus global (system) duc-
tility relationships; initial stiffness of the end diaphragm system,
which is needed for response spectrum analysis; and total or volu-
metric hysteretic energy dissipations, in both orthogonal bridge
directions as applicable. Results from this investigation can be used
to assess the effectiveness of various configurations of ductile
diaphragms in skewed bridges. Static pushover analyses are also
carried out on a set of selected end diaphragm configurations
using SAP2000 (CSI 1998) to validate the analytical equations
formulated, and to aid in understanding the impact of several

Fig. 1. Proposed end diaphragm systems (EDSs) for steel bridges:
(a) EDS-1; (b) EDS-2 (intermediate cross-frames not shown for clarity)
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system parameters on the inelastic response of bridges with bidirec-
tionally acting end diaphragms.

Nonlinear pushover analysis is adopted in this paper. Equal
proportions of the total lateral load in a given direction are applied
at each corner of the deck. PL and PT are the lateral earthquake
loads acting at the deck level on one diaphragm in the longitudinal
and transverse directions, respectively. The bidirectional loading
ratio of PL=PT or PT=PL is typically set constant in the pushover
analyses. As the system yields in one direction, the forces cannot
increase anymore, and the displacement path “bifurcates” toward
the yielding direction. Pushover stops when the prescribed axial
displacement ductility level (i.e., μ) of the BRBs is reached.

Dissipated energy is calculated when the arbitrarily selected
BRB ductility limit is reached.

Previous studies (e.g., Black et al. 2002) showed that the duc-
tility capacities of BRBs, here called, “member ductility” and con-
sidered to be a local ductility, are typically greater than μ ¼ 20,
which typically corresponds to a drift ratio of 2–3%. Here, an aver-
age value of μ ¼ 10 is considered as a target-member ductility in
developing diagrams. Global ductility is related to local member
ductility per the equations that this paper presents. Higher ductility
demands correspond to larger drifts; the engineer must ensure that
such drifts will not damage other substructure and superstructure
elements.

Fig. 2. System idealization steps for EDS-2
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Elastic Behavior and BRBs Axial Force Ratio

With reference to the three-dimensional idealized truss system
given in Fig. 3, total longitudinal and transverse direction base
shear forces in the elastic range are equal to VL ¼ 2PL and
VT ¼ 2PT , respectively, since two end diaphragms are considered
in this model. Static equilibrium gives the following BRB axial
force ratio under bidirectional loading:

CL

CS
¼ TL

TS
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðd=aÞ2
1þ ðd=sÞ2

s
ðPL=PT cosφ� sinφÞ ð1Þ

where TL, CL, TS, and CS show tension and compression forces in
the longitudinal (L) and skew (S) BRBs, respectively. Depending
on the axial force ratios, the possible limit states for this system are
as follows:
• If CL=CS ¼ TL=TS < 1, then the BRBs in the skew direction

yield first;
• If CL=CS ¼ TL=TS > 1, then the longitudinal BRBs yield first;
• If CL=CS ¼ TL=TS ¼ 1, then all the BRBs yield at the

same time.
On the basis of a survey of bridge inventories in North America, it
was decided to consider numerical values of d=s of 0.25, 0.50, 1.00,
1.25, and 1.50, a range covering most short and medium span slab-
on-girder and deck-truss steel bridges, as well as values of d=a
equal to 0.20, 0.40, 0.60, 0.80, and 1.00 (Celik and Bruneau
2007). Since many bridge standards and regulations rely on one
of two simplified combination rules to account for bidirectional
earthquake effects, here both the 30% rule (AASHTO 2002) and
the 40% rule (ATC-32 1996) were considered to show the impact
of this value on the BRBs’ axial force ratio.

For a given end diaphragm variable’s value, for example,
d=s ¼ 0:40, as an average value for many slab-on-girder bridges
in North America, the variation of force ratio with respect to the
skew angle can be investigated for different values of d=a and
PL=PT , or PT=PL. For PL=PT ¼ 0:30 and 0.40, for example, Fig. 4
shows that the absolute value of the axial force ratio increases as the
skew angle increases. For relatively small skew angles, say,
φ ≤ 30°, changes in the d=a ratio have no significant effect on
the ratio of elastic forces in the longitudinal and transverse BRBs.
For PT=PL ¼ 0:30 and 0.40, the axial force ratio decreases as the
skew angle increases. Changes in the d=a ratio are more visible at
smaller skew angles for PT=PL ¼ 0:30 and 0.40.

Inelastic Behavior When Skew BRBs Yield

Since bridge response is bidirectional because of both bidirectional
loading and the skew angle, transverse and longitudinal responses
are investigated separately for each yielding mechanism.

Response in the Transverse Direction
Fig. 5 shows the typical hysteretic curve of the system in both the
transverse and longitudinal directions. When CS, TS > CL, TL, the
skew braces yield only, and base shear strength (VyT ), yield dis-
placement (ΔyT ) and corresponding drift (ΔyT=d) at yield, global
ductility (μGT ), and the stiffness of the system (KT ) in the trans-
verse direction can be obtained depending on the bridge geometry
and BRB properties as follows:

Using equilibrium in the transverse direction, the base shear
component in the transverse direction (VyT ) can be calculated
by substituting Cy, Ty, the axial yield strength of BRBs, FyA
for CS and TS, axial forces in the skew yielding braces:

VyT ¼
nS cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðd=sÞ2

p ðFyAÞ ð2Þ

where Fy and A are the yield stress and the cross-sectional area of
each brace. Note that only the skew BRBs contribute to base shear
strength in the transverse direction. As subsequently shown, nS and
nL, are the number of BRBs placed in the skew and longitudinal
directions, respectively. Equal numbers of BRBs in both directions
are used in this study, i.e,. n ¼ nS ¼ nL.

Lateral displacements of the system can be determined
using the method of virtual work. According to this analysis
procedure, an external virtual unit load is applied in the direction
of unknown top displacement. Virtual axial forces are then calcu-
lated in the BRBs. Equating the work of external loads and the
work of internal forces gives the desired displacement. Further
details can be found in Celik and Bruneau (2007). Following
this procedure gives the lateral displacement in the transverse
direction as

ΔT ¼
L3
Sa

2μ� L3
Ls

2 sinφðPL=PT cosφ� sinφÞ
LSa2s cosφ

�
Fy

E

�
ð3ÞFig. 3. Bidirectional loading and BRB forces for EDS-1

Fig. 4. Variation of BRB elastic axial forces ratio with bridge
geometric relations and skew angle (φ) (for EDS-1 and d=s ¼ 0:40):
(a) for PL=PT ¼ 0:30; (b) for PL=PT ¼ 0:40; (c) for PT=PL ¼ 0:30;
(d) for PT=PL ¼ 0:40
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where μ is the displacement ductility for a single BRB used, E is the modulus of elasticity of steel, and LS and LL are the lengths of the BRBs
in the skew and longitudinal directions, respectively. Knowing the yield displacement also allows us to evaluate the initial stiffness as well as
the fundamental period for response in both orthogonal directions. Rewriting Eq. (3) using nondimensional bridge geometrical properties and
substituting μ ¼ 1 give the transverse drift (i.e., ΔyT=d) at yielding of the skew BRBs as follows:

ΔyT

d
¼ ½1þ ðd=sÞ

2�3=2ðd=aÞ � ½1þ ðd=aÞ2�3=2ðd=sÞ sinφðPL=PT cosφ� sinφÞ
ðd=aÞðd=sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðd=sÞ2

p
cosφ

�
Fy

E

�
ð4Þ

This equation accounts for the contributions of yielding and elastic, i.e., nonyielding, BRBs. The ratio of maximum displacement to the
yield displacement in the transverse direction (i.e., the system global ductility, μGT ) can be obtained by the ratio of the displacements that
correspond to μ ¼ μ and μ ¼ 1. Hence,

μGT ¼
½1þ ðd=sÞ2�3=2ðd=aÞμ� ½1þ ðd=aÞ2�3=2ðd=sÞðPL=PT cosφ� sinφÞ sinφ
½1þ ðd=sÞ2�3=2ðd=aÞ � ½1þ ðd=aÞ2�3=2ðd=sÞðPL=PT cosφ� sinφÞ sinφ ð5Þ

Dividing Eq. (2) by Eq. (4) gives the initial stiffness ðKTÞ of the system in the transverse direction. This result leads to

KT ¼
nðd=sÞðd=aÞcos2φ

½1þ ðd=sÞ2�3=2ðd=aÞ � ½1þ ðd=aÞ2�3=2ðd=sÞðPL=PT cosφ� sinφÞ sinφ

�
EA
d

�
ð6Þ

which enables us to evaluate the initial stiffness of the system in
terms of axial stiffness of the BRB.

Hysteretic energy dissipation (EH) during a complete cycle is
given by the shaded area in Fig. 5, or equivalently, the same hys-
teresis can be calculated from the sum of the hysteretic energy for
all individual yielding members. Also, the corresponding hysteretic
energy per total brace volume (Vol.) is useful for comparison
purposes. Performing this calculation gives:

EH

Vol:
¼ 4ðμ� 1Þ

1þ ðd=sÞ
ðd=aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðd=aÞ2
1þðd=sÞ2

q �
F2
y

E

�
ð7Þ

Response in the Longitudinal Direction
In a similar manner, base shear, yield drift, and initial stiffness can
be calculated for response in the longitudinal direction. The longi-
tudinal component of base shear (VL) when the skew BRBs yield is
equal to the following:

VL ¼
nS sinφþ nLðPL=PT cosφ� sinφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðd=sÞ2
p ðFyAÞ

¼ nPL=PT cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðd=sÞ2

p ðFyAÞ ð8Þ

Using the longitudinal displacement (ΔL), drift at yielding of skew
BRBs can be expressed as

ΔL

d
¼ ½1þ ðd=aÞ

2�3=2ðPL=PT cosφ� sinφÞ
ðd=aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðd=sÞ2

p �
Fy

E

�
ð9Þ

Note that Eq. (9) does not include the member ductility term,
revealing that there is no energy dissipation in the longitudinal
direction BRBs. Therefore, during reversed cyclic loading, only
elastic recovery takes place; and after yielding of the skew BRBs,
displacement in the longitudinal direction remains unchanged
while the displacement in the other direction increases.

Using Eqs. (8) and (9), initial stiffness in the longitudinal direc-
tion can be obtained as

KL ¼
nðd=aÞPL=PT cosφ

½1þ ðd=aÞ2�3=2ðPL=PT cosφ� sinφÞ

�
EA
d

�
ð10Þ

Here, a 345 MPa (50 ksi) grade steel with E ¼ 200000 MPa
(29000 ksi) is assumed for the results presented. Fig. 6(a) shows
the variation of nondimensional transverse base shear as a function
of end diaphragm geometric ratios when skew BRBs yield. A
decrease occurs in this value as the d=s ratio and skew angle
(φ) increase because of larger direction angles resulting in smaller
horizontal force components. For d=s ¼ 0:40, transverse drift
(ΔyT=d) at yield versus φ is illustrated in Fig. 6(b) per Eq. (4),
revealing that drift increases as φ increases. The rate of this increase
is more at large skew angles when φ ≥ 30°. Variation of nondimen-
sional transverse stiffness is given in Fig. 6(c), showing a rapid

Fig. 5. Transverse and longitudinal base shear versus displacement hysteretic curves for proposed EDSs
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decrease in stiffness at large skew angles (again when φ ≥ 30°).
While the impact of d=a ratio on drift is more pronounced at large
skew angles, stiffness is less affected by this ratio at large skew
angles since the variation of base shear is small. Global transverse
ductility ratio is plotted against φ in Fig. 6(d). This ratio is more
affected by the d=a ratio at large skew angles. Nondimensional base
shear in the longitudinal direction versus φ is given in Fig. 6(e),
showing a similar response to transverse behavior. Similar trends
are observed for other behavioral parameters in the longitudinal
direction, not presented here because of space constraints. For
μ ¼ 10, Fig. 6(f) illustrates that nondimensional dissipated hyster-
etic energy increases as d=a increases for constant values of d=s,
which could be important in an existing bridge retrofit design, but
decreases as d=s increases for constant values of d=a, which could
be important in a new bridge design. Smaller d=s ratios

corresponding to fewer girders, or girders with larger spacing,
therefore result in more energy dissipation in the system.

Inelastic Behavior When Longitudinal BRBs Yield

Response in the Transverse Direction
Yielding BRBs do not contribute to base shear strength in the trans-
verse direction, since they are in the other orthogonal direction.
Therefore, only unyielding BRBs should be considered for the
transverse base shear strength. This gives

VT ¼
n cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðd=aÞ2
p

ðPL=PT cosφ� sinφÞ ðFyAÞ ð11Þ

The transverse drift (taking μ ¼ 1) can be calculated as before.
The resulting equation is

ΔT

d
¼ �ðd=sÞ½1þ ðd=aÞ

2�3=2ðPL=PT cosφ� sinφÞ sinφþ ðd=aÞ½1þ ðd=sÞ2�3=2
ðd=aÞðd=sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðd=aÞ2

p
ðPL=PT cosφ� sinφÞ cosφ

�
Fy

E

�
ð12Þ

Base shear strength given in Eq. (11) and the yield drift given in Eq. (12) are sufficient to obtain the hysteretic curve of the system, shown in
Fig. 5. The global system ductility, μGT , can be calculated by the ratio of the maximum and yield displacements as

μGT ¼
�ðd=sÞ½1þ ðd=aÞ2�3=2 sinφðPL=PT cosφ� sinφÞμþ ðd=aÞ½1þ ðd=sÞ2�3=2
�ðd=sÞ½1þ ðd=aÞ2�3=2 sinφðPL=PT cosφ� sinφÞ þ ðd=aÞ½1þ ðd=sÞ2�3=2 ð13Þ

Also, the initial stiffness is found to be

KT ¼
nðd=aÞðd=sÞcos2φ

�ðd=sÞ½1þ ðd=aÞ2�3=2ðPL=PT cosφ� sinφÞ sinφþ ðd=aÞ½1þ ðd=sÞ2�3=2
�
EA
d

�
ð14Þ

The dissipated energy per total BRB volume during a single full
cycle can be written as

EH

Vol:
¼ 4ðμ� 1Þ

1þ ðd=aÞ
ðd=sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðd=sÞ2
1þðd=aÞ2

q �
F2
y

E

�
ð15Þ

Response in the Longitudinal Direction
Base shear in the longitudinal direction can be derived as

VyL ¼
nðPL=PTÞ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðd=aÞ2
p

ðPL=PT cosφ� sinφÞ ðFyAÞ ð16Þ

The longitudinal yield drift in terms of nondimensional system
geometric properties becomes

ΔyL

d
¼ ½1þ ðd=aÞ

2�
ðd=aÞ

�
Fy

E

�
ð17Þ

Skew BRBs do not contribute to the drift in the longitudinal direc-
tion. In this case, the global displacement ductility is equal to the
member ductility:

μGL ¼
ΔL

ΔyL
¼ μ ð18Þ

Using Eqs. (16) and (17) gives the initial stiffness of the system in
the longitudinal direction as

KL ¼
nðd=aÞPL=PT cosφ

½1þ ðd=aÞ2�3=2ðPL=PT cosφ� sinφÞ

�
EA
d

�
ð19Þ

As shown in Eqs. (11)–(19), similar behavior trends are
obtained for both transverse and longitudinal directions when

longitudinal BRBs yield, and diagrams similar to those presented
in the previous section could be derived. From Eqs. (17) and (18),
the longitudinal yield drift (ΔyL=d) is independent of the skew
angle (φ) and the global longitudinal ductility ratio is equal to
the member (BRB) ductility.

EDS-2

Similar analytical expressions can be developed to describe the
behavior of skewed bridges having the EDS-2 configuration of
end diaphragms. Special cases are also considered to investigate
the effect of certain parameters on the bidirectional seismic
response of these bridges. Figs. 1(b) and 2 show the selected con-
figuration of BRBs for EDS-2. In this case, BRB lengths differ
from each other. The lengths of long (LL) and short (LS) BRBs
can be given as

LL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ s2 þ d2 þ 2as sinφ

q
ð20Þ

LS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ s2 þ d2 � 2as sinφ

q
ð21Þ

Elastic Behavior and BRBs Axial Force Ratio

For the system considered, it is convenient to evaluate the ratio
of the elastic forces of short and long BRBs, to obtain load-
displacement diagrams. Using the geometry in Fig. 2, elastic axial
force ratio of the BRBs is obtained as follows
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CL

CS
¼ TL

TS
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ
1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ

s

×

� ðs=aÞðsinφ� PL=PT cosφÞ � 1
ðs=aÞð� sinφþ PL=PT cosφÞ � 1

�
ð22Þ

Here, CS, TS and CL, TL denote axial compression and tension
forces in the short and longitudinal BRBs, respectively. In the elas-
tic range, shear forces in each longitudinal and transverse direction
are VL ¼ 2PL and VT ¼ 2PT . The following are the possible limits
of the brace force ratio and the corresponding meaning.
• If CL=CS ¼ TL=TS < 1, then the short BRBs yield first;
• If CL=CS ¼ TL=TS > 1, then the long BRBs yield first;
• If CL=CS ¼ TL=TS ¼ 1, then all BRBs yield at the same time.
For EDS-2, Fig. 7 shows the variation of the BRB axial forces ratio
as a function of bridge geometry and the skew angle (φ). For
s=a ¼ 0:50, changes in the axial force ratio are depicted in
Figs. 7(a) and 7(b) for PL=PT ¼ 0:30 and 0.40, respectively. To
show the impact of the s=a ratio on the axial force ratio,

taking s=a ¼ 1:00 as constant and d=a as variable, Figs. 7(c)
and 7(d) are plotted against φ for PL=PT ¼ 0:30 and 0.40,
respectively. In all cases, a decrease in the axial force ratio is ob-
served as φ increases. Compared with the s=a ¼ 0:50 case, changes
in the axial force ratio are more pronounced in s=a ¼ 1:00. Also,
higher values are obtained for s=a ¼ 1:00 and PL=PT ¼ 0:40. The
effect of d=a ratio on the axial force ratio increases as φ increases.
For constant values of φ, the axial force ratio decreases as the d=a
ratio increases.

Inelastic Behavior When Short BRBs Yield

Response in the Transverse Direction
To obtain the yield shear force in the transverse direction when
short BRBs yield, the procedure followed for EDS-1 is
repeated. The elastic brace forces are first replaced with the axial
yield forces in the yielding BRBs. The other longer BRBs remain
elastic up to the specified limit state. Writing the equations of equi-
librium in the transverse direction gives the yield base shear in this
direction as follows:

VyT ¼
�

4ðs=aÞ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ

p
½ðs=aÞðsinφ� PL=PT cosφÞ þ 1�

�
ðFyAÞ ð23Þ

Similarly, the yield drift in the transverse direction can be obtained as

ΔyT

d
¼ f½1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ�3=2½ðs=aÞ sinφþ 1�½ðs=aÞðPL=PT cosφ� sinφÞ � 1�
þ ½1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ�3=2½ðs=aÞðPL=PT cosφ� sinφÞ þ 1�½ðs=aÞ sinφ� 1�g

×

�
Fy

E

�
=2ðd=aÞðs=aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ

q
cosφ½ðs=aÞðPL=PT cosφ� sinφÞ � 1� ð24Þ

Response in the Longitudinal Direction
The following behavioral characteristics are reached for response in the longitudinal direction. The base shear in the longitudinal direction is
found to be

VyL ¼
�

4ðs=aÞPL=PT cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ

p
½ðs=aÞðPL=PT cosφ� sinφÞ � 1�

�
ðFyAÞ ð25Þ

And the corresponding drift in the longitudinal direction can be expressed as

ΔyL

d
¼ f½1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ�3=2½ðs=aÞðsinφ� PL=PT cosφÞ þ 1�
þ ½1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ�3=2½ðs=aÞðsinφ� PL=PT cosφÞ � 1�g

×

�
Fy

E

�
=2ðd=aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ

q
½ðs=aÞðPL=PT cosφ� sinφÞ � 1� ð26Þ

As before, the initial stiffness of the system in the transverse and
longitudinal directions can be obtained from Eqs. (23)–(26). Since
the resulting equations are too long, only numerical results are
shown in Fig. 8.

Taking d=a ¼ 0:60 as constant and s=a as variable, Fig. 8(a)
shows the nondimensional transverse base shear strength as a func-
tion of the skew angle (φ). For constant values of s=a, a decrease in
the nondimensional base shear is observed as φ increases. The s=a
ratio has an important impact on the base shear at smaller skew
angles. For constant values of φ, the base shear strength decreases

as s=a decreases, i.e., smaller base shears are obtained at smaller β
angles. As shown in Fig. 8(b), the transverse yield drift (ΔyT=d)
increases as φ increases but decreases as s=a increases, revealing
that BRBs with larger direction angles would be preferable to
obtain stiffer end diaphragms. This also suggests that EDS-2 is
more effective when sufficient girder spacing exists in the bridge
superstructure. As expected, the increase in drift is less at smaller
skew angles when φ ≤ 30°, suggesting that severely skewed sys-
tems should be avoided if possible. From Fig 8(c), the nondimen-
sional transverse stiffness is observed to decrease as φ increases for

JOURNAL OF BRIDGE ENGINEERING © ASCE / MARCH/APRIL 2011 / 213



most ratios of s=a. Fig. 8(d) gives the variation of longitudinal base
shear versus φ, revealing a decrease in this value with increasing
skew angle. For smaller values of the s=a ratio, Fig. 8(e) illustrates
an increase in the longitudinal drift (ΔyL=d). This response is
reversed for larger s=a ratios. Comparing transverse and longitudi-
nal drift diagrams shows that although relatively larger drifts are

obtained in the transverse direction for small s=a ratios, both
transverse and longitudinal drifts are much closer to each other,
especially for larger φ angles. As shown in Fig. 8(f), longitudinal
stiffness decreases as φ increases for the most practical values of
s=a. For a wide range of skew angles, comparing transverse and
longitudinal stiffnesses indicates that the stiffness in the longitudi-
nal direction is larger than the transverse stiffness for smaller values
of s=a. As φ and s=a increase, closer stiffnesses are obtained in
both directions.

Fig. 6. Variation of behavioral characteristics when skew BRBs
yield: (a) nondimensional transverse base shear strength versus skew
angle (φ); (b) transverse yield drift versus φ; (c) nondimensional
transverse stiffness versus φ; (d) global transverse ductility ratio
versus φ; (e) nondimensional longitudinal base shear versus φ;
(f) volumetric energy dissipation versus d=a ratio for member ductility
of μ ¼ 10

Fig. 8. Variation of behavioral characteristics when short BRBs yield:
(a) nondimensional transverse base shear strength versus skew angle φ;
(b) transverse yield drift versus φ; (c) nondimensional transverse
stiffness versus φ; (d) nondimensional longitudinal base shear strength
versus φ; (e) nondimensional longitudinal yield drift versus φ;
(f) nondimensional longitudinal stiffness versus φ

Fig. 7. Variation of BRB elastic axial forces ratio with bridge geo-
metric relations and skew angle (φ) (for EDS-2); (a) for PL=PT ¼
0:30 and s=a ¼ 0:50; (b) for PL=PT ¼ 0:40 and s=a ¼ 0:50; (c) for
PL=PT ¼ 0:30 and s=a ¼ 1:00; (d) for PL=PT ¼ 0:40 and s=a ¼ 1:00

Fig. 9. Variation of volumetric energy dissipation with skew angle φ
(for member ductility of μ ¼ 10): (a) short BRBs yield and
d=a ¼ 0:60; (b) short BRBs yield and d=a ¼ 1:00; (c) long BRBs yield
and d=a ¼ 0:60; (d) long BRBs yield and d=a ¼ 1:00
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Hysteretic Energy Dissipation
The dissipated volumetric energy in this case can be given as follows:

EH

Vol:
¼ 4ðμ� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ

p �
F2
y

E

�
ð27Þ

Assuming d=a ¼ 0:60, μ ¼ 10 and as depicted in Figs. 9(a) and 9(b), hysteretic energy decreases as φ increases. Changes in the s=a
ratio have more effect on the dissipated energy at larger φ angles. Compared with d=a ¼ 0:60, the end diaphragm system with d=a ¼ 1:00
dissipates more energy at larger φ angles.

Inelastic Behavior When Long BRBs Yield

Long BRBs yield when CL=CS ¼ TL=TS > 1. The inelastic behavior is governed by yielding of the long BRBs, and the system
plastically displaces until the maximum displacement demand is reached, which is related to the member ductility demand. Again, an
elastic-plastic inelastic behavior develops.

Response in the Transverse Direction
As was done for the previous case with short BRBs yielding to drive all relevant equations, but this time instead replacing the axial force
values of long BRBs by their corresponding yield values, the following equations are obtained. The base shear is then equal to

VyT ¼
�

4ðs=aÞ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ

p
½ðs=aÞðPL=PT cosφ� sinφÞ þ 1�

�
ðFyAÞ ð28Þ

And, the transverse yield drift is
ΔyT

d
¼ f½1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ�3=2½ðs=aÞ sinφ� 1�½ðs=aÞðPL=PT cosφ� sinφÞ þ 1�
þ ½1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ�3=2½ðs=aÞðPL=PT cosφ� sinφÞ � 1�½ðs=aÞ sinφþ 1�g

×

�
Fy

E

�
=2ðd=aÞðs=aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ

q
cosφ½ðs=aÞð�PL=PT cosφþ sinφÞ � 1� ð29Þ

As expected, the initial stiffness of the system in the transverse direction is the same as that for the short BRBs yielding case.

Response in the Longitudinal Direction
Performing equilibrium equations in the longitudinal direction gives the longitudinal base shear at long BRBs yielding as

VyL ¼
�

4ðs=aÞðPL=PTÞ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ

p
½ðs=aÞðsinφ� PL=PT cosφÞ � 1�

�
ðFyAÞ ð30Þ

The following formula is obtained for the yield drift in the longitudinal direction:
ΔyL

d
¼ f½1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ�3=2½ðs=aÞðPL=PT cosφ� sinφÞ þ 1�
þ ½1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ�3=2½ðs=aÞðPL=PT cosφ� sinφÞ � 1�g

×

�
Fy

E

�
=2ðd=aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ

q
½ðs=aÞðPL=PT cosφ� sinφÞ þ 1� ð31Þ

Again, the initial stiffness of the system in the transverse and longitudinal directions can be produced using Eqs. (28), (29), (31), and (32).
Since the general behavioral tendency is similar to those for the short BRBs yielding case, no further figures are presented. The initial stiffness
of the system in the longitudinal direction is the same as for the case of short BRBs yielding.

Hysteretic Energy Dissipation
In case of longitudinal BRBs yielding, this value is obtained as

EH

Vol:
¼ 4ðμ� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 � 2ðs=aÞ sinφ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=aÞ2 þ ðd=aÞ2 þ 2ðs=aÞ sinφ

p �
F2
y

E

�
ð32Þ

Again, assuming d=a ¼ 0:60 and μ ¼ 10, Figs. 9(c) and 9(d) show
that the dissipated energy increases as the skew angle increases be-
cause larger φ angles result in longer BRBs that also leads to high
volume of long BRBs and thus larger dissipated energy. Compared
with d=a ¼ 0:60, the retrofit system with d=a ¼ 1:00 dissipates
less energy at larger skew angles.

Special Cases

Although the previously derived general equations for EDS-1 and
EDS-2 are complex, because of the large number of geometric
parameters that they consider, they take simpler forms in special
cases. For example, for nonskewed bridges (φ ¼ 0°), simpler
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formulas are obtained by substitutingφ ¼ 0 in the relevant equations
and are given in detail inCelik and Bruneau (2007).Additionally, the
impact of several loading ratios on the inelastic behavior of skewed
systems is numerically investigated in Celik and Bruneau (2007).

Numerical Example

Two ductile end diaphragm systems, namely, S1 and S2, are
selected (Fig. 10). Comparison between S1 and S2 is important
to assess the relative effectiveness of the end diaphragm configu-
rations on the inelastic behavior for skewed systems. Special
emphasis is placed on hysteretic energy dissipation. S1 and S2
are highly skewed systems (φ ¼ 45°) having BRB configurations
that correspond to EDS-1 and EDS-2, respectively. In S2, because
of the presence of skewness, the lengths of the BRBs are not equal
to each other and thus “short” and “long” BRBs exist. Comparison
between skewed systems such as S1 and S2 and nonskewed
systems similar to S1 and S2 is also worthwhile and given in Celik
and Bruneau (2007).

The geometrical dimensions of these systems are arbitrarily
selected in simplicity and are not intended to correspond to a
specific bridge. For this purpose, a system having a side length
of 914.4 mm (36″) is selected for the analyses. Both unidirectional
and bidirectional loadings are considered to show the effect of
bidirectional earthquake effects. It is assumed that the BRBs
have a target displacement ductility of μ ¼ 4, a yield point of
Fy ¼ 345 MPa (50 ksi), and a modulus of elasticity of E ¼
200;000 MPa (29,000 ksi). No effort has been made to calculate
actual ductility demands in the BRBs; instead, for comparison
purposes and for simplicity, a displacement ductility of μ ¼ 4 is
assumed in this example. Higher values can be established through
more rigorous pushover analysis for a bridge under consideration.
Other system properties are summarized in Table 1.

Static unidirectional (in X or Y directions) and bidirectional
(labeled X þ Y) pushover analyses are conducted using
SAP2000. Note that X and Y indicate the transverse (T) and lon-
gitudinal (L) directions, respectively. Using SAP2000 results and
the formulas developed in this paper, the system parameters and
responses of each system are summarized in Table 1.

To compare the effectiveness of each system, similar systems
are defined as having either BRBs with same cross-sectional area
(SA), BRBs with the same base shear strength (SBS) in the gov-
erning direction, and BRBs with the same initial stiffness (SIS). For
each case, results are typically presented for the base shear at yield
(VB) in the governing direction, the initial stiffness in the governing
direction (KE), the corresponding yield displacement (Δy),

the maximum displacement reached (Δmax), hysteretic energy
dissipated (EH) at μ ¼ 4, the volumetric energy dissipation
(EH=Vol:), which is the energy dissipated per BRB material used,
and the effectiveness ratio (with respect to an arbitrarily chosen
reference system having similar properties) to each system in terms
of hysteretic energy dissipation. Note that EH is calculated by
using the area under 1=4 of a complete hysteretic loop. The follow-
ing observations can be made from Table 1:
• Under loading in the X direction and for SA, compared with S2,

S1 has greater base shear strength, yield, and maximum displa-
cement demands as well as total and volumetric hysteretic
energies, but lower initial stiffness. S1 used 68% more bracing
material. For SBS in the transverse direction, compared with S2,
S1 has greater yield and maximum displacements and total
and volumetric hysteretic energy dissipations but lower initial
stiffness and required cross-sectional area. S1 used 11% more
material. For SIS, all structural response characteristics are
greater in S1 than in S2. In all cases, under the effect of
transverse loading, the effectiveness ratios for S1 and S2 are
1.00 and 0.75, respectively.

• Under unidirectional loading in the longitudinal (Y) direction
and for SA, compared with S2, S1 has greater base shear capa-
city, initial stiffness, and total hysteretic energy dissipation but
lower yield and maximum displacements, and volumetric hys-
teretic energy dissipation. In this case, 68% more BRB material
is used in S1. For SBS compared with S2, S1 has greater initial
stiffness but lower yield and maximum displacement demands,
required cross-sectional area, and total and volumetric hysteretic
energy dissipations. S1 used 13% more material. For SIS in the
longitudinal direction, all structural response characteristics are
lower in S1 than in S2. S2 also used 19% more BRB material. In
all cases, under the effect of longitudinal loading, the effective-
ness ratios for S1 and S2 are 0.80 and 1.00, respectively. The
efficiency is reversed under the longitudinal and bidirectional
loadings compared with transverse loading, since the yielding
BRBs change in S2. When long BRBs yield in S2, the system
dissipates more energy as compared with S1.

• Under two-directional loading, investigating the systems’
response in each of the principal orthogonal directions is appro-
priate. For SA and considering the transverse response in the
transverse direction under bidirectional loading, compared with
S2, S1 has greater base shear capacity, initial stiffness, and yield
and maximum displacement demands. Since the axial forces of
the BRBs in the longitudinal direction are zero, S1 does not dis-
place and no energy is dissipated for this particular case, i.e., for
the selected bridge geometry and bidirectional loading ratio.

Fig. 10. Selected skewed systems representing various end diaphragm BRB configurations (for Table 1)
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The BRBs in the skew direction yield in this case (four out of
eight). The overall behavior is bidirectional in S2, i.e., it
displaces in both orthogonal directions; and after the yielding
of long BRBs, the system moves significantly in the longitudi-
nal direction and reaches its maximum displacement. From
Table 1, the numeric values of the global displacement ductili-
ties (μG) in both transverse and longitudinal directions are cal-
culated as 2.34 and 4.84, respectively, keeping in mind that the
BRBs used a member (local) displacement ductility of 4. As
compared with S2, S1 has greater longitudinal base shear
strength and total hysteretic energy dissipation but lower energy
dissipated per BRB volume. S1 used 68% more bracing materi-
al. For SBS in the transverse direction, compared with S2, S1
has greater yield and maximum displacements but lower initial
stiffness. Again, no response is obtained in the longitudinal
direction in S1, as explained previously. The behavior is also
bidirectional in S2 and after the yielding of long BRBs, the
system displaces in the longitudinal direction significantly;
the global ductilities are the same as above. Compared with
S2, S1 has lower required cross-sectional area, total and volu-
metric hysteretic energy dissipations, and 13% more material is
used in S1, eight braces in S1, four braces in S2. In all cases,
effectiveness ratios for S1 and S2 are 0.80 and 1.00, respec-
tively. Lower required cross-sectional areas for the BRBs lead
to lower axial yield forces and thus create lower-end connection
forces that could be desirable in seismic design.

Conclusions

Numerical pushover analyses have been conducted on two ductile
end diaphragms configurations, EDS-1 and EDS-2, incorporating
BRBs and developed to provide seismic resistance of skewed steel
bridges under bidirectional earthquake excitation. Results indi-
cate that:
1. Skewness has a more severe impact on the end diaphragms’

seismic behavior, although not a significant one until

φ ≥ 30°. Although the base shear strength and lateral stiffness
decrease as the skew angle increases, drifts increase instead.

2. For EDS-1, smaller drifts are obtained in skewed bridges for
larger d=a values and do not change much after d=a ¼ 1:00.
Also, dissipated energy per BRB volume used is less affected
after d=s ¼ 1:00. These results suggest that appropriate values
for both d=a and d=s ratios could be selected between 0.5 and
1.0. A similar observation is made for EDS-2, as larger s=a
ratios have a lesser impact on the behavioral characteristics,
e.g., base shear, drift, and stiffness, as well as the dissipated
energy. Appropriate values for the s=a ratio could also be se-
lected between 0.5 and 1.0. Severely skewed systems had a
poorer response and should be avoided if possible.

3. Under bidirectional loading and for a given required design
base shear, compared with S2, S1 achieves lower required
cross-sectional area and total and volumetric hysteretic energy
dissipations. The EDS-1 configuration therefore seems to be
more effective. Lower required cross-sectional areas for the
BRBs lead to lower axial forces and smaller BRBs, and thus
create lower end connection forces, resulting in simpler con-
nections to superstructure and substructure that could be desir-
able in seismic design. However, S1 has the advantage over S2
to result in a more flexible ductile diaphragm. Flexible ductile
end diaphragms can be desirable in bridges with relatively flex-
ible substructures in which the end diaphragms need to reach a
larger lateral displacement for a given member ductility.

4. Some of the assumptions made in this paper could be elimi-
nated in future analytical work. For example, diaphragms hav-
ing BRBs of unequal area, if deemed to be useful in some
applications, could be investigated. “Tuning” the BRB areas
to have yielding in both orthogonal directions at the same time
might provide an efficient design and better seismic response
in some cases, but not necessarily so, considering that the
bridge is skewed and that the earthquake excitation is bidirec-
tional with an unpredictable orientation of strongest ground
motions.

Table 1. Effect of Bracing Configuration on Hysteretic Energy Dissipation for Skewed Bridges (φ ¼ 45°)

System Info
VB

(kN)
KE

(kN=mm)
Δy

(mm)
Δmax
(mm) μG

A
(mm2)

LL
(mm)

LS
(mm) LOAD EH (kN.mm)

Vol.
(mm3)

EH=Vol ð10�3Þ
(kN mm=mm3)

Eff.
Ratio

S1 SA T 444.85 66.50 6.69 20.12 3.01 645.16 1293.11 NA X 5974.34 6674103 0.89 1.00

S2 SA T 292.65 85.32 3.43 12.51 3.65 645.16 1921.26 1151.38 X 2657.26 3964689 0.67 0.75

S1 SBS T 125.81 18.81 6.69 20.12 3.01 182.45 1293.11 NA X 1689.62 1887423 0.89 1.00

S2 SBS T 125.81 36.68 3.43 12.51 3.65 277.42 1921.26 1151.38 X 1142.35 1704824 0.67 0.75

S1 SIS T 444.85 66.50 6.69 20.12 3.01 645.16 1293.11 NA X 5974.34 6674103 0.89 1.00

S2 SIS T 228.28 66.50 3.43 12.51 3.65 503.22 1921.26 1151.38 X 2072.78 3092428 0.67 0.75

S1 SA L 629.11 199.7 3.15 12.60 4.00 645.16 1293.11 NA Y 5945.09 6674103 0.89 0.80

S2 SA L 423.47 100.1 4.23 14.70 3.48 645.16 1921.26 1151.38 Y 4434.65 3964689 1.12 1.00

S1 SBS L 177.93 56.5 3.15 12.60 4.00 182.45 1293.11 NA Y 1683.47 1887423 0.89 0.80

S2 SBS L 177.93 42.1 4.23 14.70 3.48 271.10 1921.26 1151.38 Y 1863.12 1665985 1.12 1.00

S1 SIS L 629.11 199.7 3.15 12.60 4.00 645.16 1293.11 NA Y 5945.09 6674103 0.89 0.80

S2 SIS L 847.48 199.7 4.23 14.70 3.48 1291.22 1921.26 1151.38 Y 8874.96 7934908 1.12 1.00

S1 SA T 444.85 99.7 4.46 17.88 4.00 645.16 1293.11 NA X þ Y 5969.89 6674103 0.89 0.80

L 444.85 — 0 0 NA

S2 SA T 299.41 92.1 3.25 7.59 2.34 645.16 1921.26 1151.38 X þ Y 4434.26 3964689 1.12 1.00

L 299.41 109.7 2.73 13.20 4.84

S1 SBS T 125.81 28.2 4.46 17.88 4.00 182.50 1293.11 NA X þ Y 1688.24 1887941 0.89 0.80

L 125.81 — 0 0 NA

S2 SBS T 125.81 38.7 3.25 7.59 2.34 271.10 1921.26 1151.38 X þ Y 1863.10 1665962 1.12 1.00

L 125.81 46.1 2.73 13.20 4.84
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